In this paper, the author queried a few conclusions in [1] , and elaborated different views on several problems, such as relations between non-Euclidean geometry and real space, relations between mathematical logic and thinking, the significance of Godel s second incompleteness theorem, and so on.
本文对文〔1〕的几个论断提出一些疑问 ,并在“非欧几何与现实空间”、“数理逻辑与思维”、“哥德尔不完备性定理的意义”等若干问题上表述了与《数学是什么》一文中不同的观点。
The development of calculus was based on not very strict but practical thought instead of Euclid s strict thought.
微积分是在不很严格、讲究实用的基础上 ,而不是在欧几里得严密思想的基础上发展起来的 。