Essentially section 1 includes details about: (1) solution of the full Navier Stokes equations using Beam Warming approximate factorization method an.
采用隐式高阶紧致差分格式结合 Beam- Warming近似因式分解法求解全 N- S方程 ,对二维、粘性、非定常、可压微作动器外流场进行数值模拟。
In this paper,we ll reserch the unredueed factor of polynomial with integral coefficient,we give a kind of way to distinguish the unreduced polynomial with lower degree,and the way to deal with some unreduced problems.
本文研究整系数多项式的不可约因式,给出了低次不可约多项式的判别的一种方法和一些不可约问题的处理方法。
Identities of Adjoint Polynomials of Graphs Cluster of G_(1,rp_n) and Its Factorizations;
图簇G_(1,rp_n)的伴随多项式的恒等式及其因式分解
The factorization of adjon polynomials of graphs of Γ_(r(2k+p)+1)~(ψ*G(i,j))-shape and chromatic non-uniqueness analysis;
Γ_(r(2k+p)+1)~(ψ*G(i,j))型图簇的伴随多项式的因式分解及色性